ChatGPT performs better on Julia than Python (and R) for Large Language Model (LLM) Code Generation. Why?
November 19 2023 in Julia, Programming | Tags: ai, artificial intelligence, chatgpt, julia, large language models, llm, machine learning, MATLAB, python, r | Author: Christopher Rackauckas
Machine learning is all about examples. The more data you have, the better it should perform, right? With the rise of ChatGPT and Large Language Models (LLMs) as a code helping tool, it was thus just an assumption that the most popular languages like Python would likely be the best for LLMs. But because of the increased productivity, I tend to use a lot of Julia, a language with an estimated user-base of around a million programmers. For this reason, people have often asked me how it fairs with ChatGPT, Github Copilot, etc., and so I checked out those pieces and… was stunned. It’s really good. It seemed better than Python actually?
The data is in: Julia does well with ChatGPT
This question was recently put to the test by a researcher named Alessio Buscemi in A Comparative Study … READ MORE
JuliaCall Update: Automated Julia Installation for R Packages
January 18 2021 in Differential Equations, Julia, Mathematics, Programming, R | Tags: devops, differentialequations, installation, julia, juliacall, modelingtoolkit, r | Author: Christopher Rackauckas
Some sneakily cool features made it into the JuliaCall v0.17.2 CRAN release. With the latest version there is now an install_julia function for automatically installing Julia. This makes Julia a great high performance back end for R packages. For example, the following is an example from the diffeqr package that will work, even without Julia installed:
install.packages("diffeqr") library(diffeqr) de <- diffeqr::diffeq_setup() lorenz <- function (u,p,t){ du1 = p[1]*(u[2]-u[1]) du2 = u[1]*(p[2]-u[3]) - u[2] du3 = u[1]*u[2] - p[3]*u[3] c(du1,du2,du3) } u0 <- c(1.0,1.0,1.0) tspan <- c(0.0,100.0) p <- c(10.0,28.0,8/3) prob <- de$ODEProblem(lorenz,u0,tspan,p) fastprob <- diffeqr::jitoptimize_ode(de,prob) sol <- de$solve(fastprob,de$Tsit5(),saveat=0.01)
Under the hood it’s using the DifferentialEquations.jl package and the SciML stack, but it’s abstracted from users so much that Julia is essentially an alternative to Rcpp with easier interactive development. The following example really brings the seamless … READ MORE
GPU-Accelerated ODE Solving in R with Julia, the Language of Libraries
August 24 2020 in Differential Equations, Julia, Programming, R, Uncategorized | Tags: diffeqr, differentialequations, gpu, high-performance, jit, r | Author: Christopher Rackauckas
R is a widely used language for data science, but due to performance most of its underlying library are written in C, C++, or Fortran. Julia is a relative newcomer to the field which has busted out since its 1.0 to become one of the top 20 most used languages due to its high performance libraries for scientific computing and machine learning. Julia’s value proposition has been its high performance in high level language, known as solving the two language problem, which has allowed allowed the language to build a robust, mature, and expansive package ecosystem. While this has been a major strength for package developers, the fact remains that there are still large and robust communities in other high level languages like R and Python. Instead of spawning distracting language wars, we should ask the … READ MORE