ChatGPT performs better on Julia than Python (and R) for Large Language Model (LLM) Code Generation. Why?
November 19 2023 in Julia, Programming | Tags: ai, artificial intelligence, chatgpt, julia, large language models, llm, machine learning, MATLAB, python, r | Author: Christopher Rackauckas
Machine learning is all about examples. The more data you have, the better it should perform, right? With the rise of ChatGPT and Large Language Models (LLMs) as a code helping tool, it was thus just an assumption that the most popular languages like Python would likely be the best for LLMs. But because of the increased productivity, I tend to use a lot of Julia, a language with an estimated user-base of around a million programmers. For this reason, people have often asked me how it fairs with ChatGPT, Github Copilot, etc., and so I checked out those pieces and… was stunned. It’s really good. It seemed better than Python actually?
The data is in: Julia does well with ChatGPT
This question was recently put to the test by a researcher named Alessio Buscemi in A Comparative Study … READ MORE
The Essential Tools of Scientific Machine Learning (Scientific ML)
August 20 2019 in Differential Equations, Julia, Mathematics, Programming, Scientific ML | Tags: ai, differential equations, natural language processing, scientific machine learning, scientific ml, sciml | Author: Christopher Rackauckas
Scientific machine learning is a burgeoning discipline which blends scientific computing and machine learning. Traditionally, scientific computing focuses on large-scale mechanistic models, usually differential equations, that are derived from scientific laws that simplified and explained phenomena. On the other hand, machine learning focuses on developing non-mechanistic data-driven models which require minimal knowledge and prior assumptions. The two sides have their pros and cons: differential equation models are great at extrapolating, the terms are explainable, and they can be fit with small data and few parameters. Machine learning models on the other hand require “big data” and lots of parameters but are not biased by the scientists ability to correctly identify valid laws and assumptions.
However, the recent trend has been to merge the two disciplines, allowing explainable models that are data-driven, require less data than traditional machine learning, and utilize the … READ MORE